Galileo Galilei

DISCORSI E DIMOSTRAZIONI MATEMATICHE
INTORNO A DUE NUOVE SCIENZE

ATTENENTI ALLA MECANICA & I MOVIMENTI LOCALI


Torna all'IndiceIndietro

APPENDICE
contenente i teoremi, e le relative dimostrazioni,
intorno al centro di gravità dei solidi,
quali furono scritti un tempo dal medesimo autore

POSTULATO
Dati dei pesi eguali similmente disposti in bilance diverse, postuliamo che, se il centro di gravità del composto degli uni divide la [relativa] bilancia secondo una certa proporzione, anche il centro di gravità del composto degli altri divide la [rispettiva] bilancia secondo la medesima proporzione.

LEMMA

Figura 82

La linea ab sia intersecata a metà in c, e la metà ac sia divisa in e; sì che, qual è la proporzione che be ha ad ea, tale sia quella che ae ha ad ec. Dico, che la be è doppia della stessa ea. Infatti, poiché, come be sta ad ea, così ea sta ad ec, componendo e permutando, avremo che, come ba sta ad ac, così ae sta ad ec; ma come ae sta ad ec, cioè come ba ad ac, così be sta ad ea: perciò be è doppia della stessa ea.

Ciò posto, si dimostra che: Se un numero qualsiasi di grandezze, che si eccedono egualmente e i cui eccessi sono eguali alla minima di esse, vengono disposte su una bilancia in modo che pendano a distanze eguali, il centro di gravità di tutte [le grandezze] divide la bilancia in modo tale che la parte verso le [grandezze] minori è doppia dell'altra.

Figura 83

Pertanto, sulla bilancia ab, a distanze eguali, pendano, in numero qualsiasi, le grandezze f, g, h, k, n, le quali siano come si è detto; e la minima di esse sia n; inoltre siano a, c, d, e, b, i punti di sospensione, e sia x il centro di gravità di tutte le grandezze così disposte. Bisogna mostrare che la parte bx della bilancia, verso le grandezze minori, è doppia dell'altra [parte] xa.

Si divida la bilancia a metà nel punto d, che necessariamente cadrà o in qualcuno dei punti di sospensione, o nel punto di mezzo tra due sospensioni; ora, le altre distanze fra le sospensioni comprese tra a e d siano tutte divise a metà nei punti m e i; le grandezze, poi, vengono tutte divise in parti eguali alla n; il numero delle parti della f sarà allora eguale al numero delle grandezze che pendono dalla bilancia; le parti della g, invece, saranno una di meno, e così per tutte le altre. Le parti della f siano, pertanto, n, o, r, s, t; quelle della g [siano] n, o, r, s; quelle della h [siano] n, o, r; infine, le parti della k siano n e o: tutte le parti [cioè la loro somma] segnate da n saranno eguali alla f; tutte quelle segnate da o, saranno eguali alla g; quelle segnate da r, saranno eguali alla h; quelle segnate da s, lo saranno alla k; infine la grandezza t è eguale alla n. Poiché, dunque, tutte le grandezze segnate da n sono tra di loro eguali, il punto del loro equilibrio sarà in d, che divide a metà la bilancia ab; per la medesima ragione, di tutte le grandezze segnate da o il punto di equilibrio è in i; di quelle segnate da r è in c; e quelle segnate da s, hanno il loro punto di equilibrio in m; infine t è appesa in a. Pertanto, sulla bilancia ab, a distanze eguali d, i, c, m, a, sono appese grandezze che si eccedono egualmente e il cui eccesso è eguale alla minima: ma la massima, che risulta composta di tutte le n, pende da d; la minima, invece, cioè t, pende da a; e tutte le altre sono disposte ordinatamente. V'è, inoltre, un'altra bilancia ab, sulla quale sono disposte nel medesimo ordine altre grandezze, eguali alle predette in numero e in grandezza: perciò le bilance ab e ad verranno divise dai centri [di gravità] del composto di tutte le grandezze secondo la medesima proporzione. Ma il centro di gravità delle suddette grandezze è x; perciò x divide le bilance ba e ad secondo la medesima proporzione, in modo che, come bx sta a xa così xa stia a xd; perciò bx è doppia di xa, per il lemma posto sopra. Il che è quello che si doveva provare.

Se in un conoide parabolico viene inscritta una figura e se ne circoscrive un'altra, [costituite] da cilindri aventi eguale altezza, e si divide l'asse del detto conoide in modo che la parte verso il vertice sia doppia della parte verso la base; il centro di gravità della figura inscritta sarà più vicino del detto punto di divisione alla base della porzione [ossia del conoide]; il centro di gravità della figura circoscritta, invece, sarà più lontano del medesimo punto dalla base del conoide; e la distanza di ciascuno dei due centri da tale punto sarà eguale alla linea, che sia la sesta parte dell'altezza di uno dei cilindri da cui sono costituite le figure.

Figura 84

Siano, pertanto, un conoide parabolico e figure tali, quali si sono dette: l'una sia inscritta, l'altra circoscritta; l'asse del conoide, il quale sia ae, venga diviso nel punto n in modo che an sia doppia di ne. Bisogna mostrare che il centro di gravità della figura inscritta si trova sulla linea ne, mentre il centro di quella circoscritta si trova sulla an. Le figure così disposte vengano intersecate da un piano [passante] per l'asse, e la sezione della parabola [ossia del conoide parabolico] sia bac: l'intersezione del piano secante con la base del conoide sia la linea bc; le sezioni dei cilindri siano figure rettangolari: come risulta nel disegno. Ora, il primo dei cilindri inscritti, il cui asse è de, rispetto al cilindro, il cui asse è dy, ha la medesima proporzione che il quadrato id al quadrato sy, cioè che da da ad ay; inoltre, il cilindro, il cui asse è dy, sta al cilindro yz, come il quadrato di sy sta al quadrato di rz, cioè come ya sta ad az; e, per la stessa ragione, il cilindro, il cui asse è zy, sta a quello, il cui asse è zu, come za sta ad au. Dunque, i suddetti cilindri stanno tra di loro come le linee da, ay, za, au: ma queste linee sono tra loro egualmente eccedenti e il loro eccesso è eguale alla minima, in modo che az risulta doppia di au, mentre ay ne risulta tripla, e da quadrupla. I suddetti cilindri sono, dunque, grandezze egualmente eccedentisi l'una l'altra, i cui eccessi sono eguali alla minima di esse; inoltre la linea xm è quella, sulla quale esse sono appese a distanze eguali (infatti ciascun cilindro ha il centro di gravità nel mezzo del proprio asse): perciò, per le cose sopra dimostrate, il centro di gravità della grandezza composta da tutte [le grandezze date] dividerà la linea xm in modo che la parte verso x sia doppia dell'altra. Si faccia, dunque, la divisione, e xa sia doppia di a m: dunque, a è il centro di gravità della figura inscritta. Si divida la au a metà in e ; e x sarà doppia della me: ma xa è doppia della a m, perciò e e è tripla della ea . Ma ae è tripla della en: risulta, dunque, che en è maggiore della ea , e perciò a , che è il centro di gravità della figura inscritta, è più vicino di n alla base del conoide. Poiché, come ae sta ad en, così la parte tolta e e sta alla parte tolta ea , si avrà che anche la parte rimanente starà all'altra parte rimanente, cioè ae ad na, come ae sta ad en. Dunque, a n è la terza parte di ae e la sesta parte di au. Nel medesimo modo si dimostra poi che i cilindri della figura circoscritta si eccedono egualmente, che gli eccessi sono eguali al cilindro minimo, e che i loro centri di gravità si trovano sulla linea e m a distanze eguali. Se, pertanto, si divide e m in p , in modo che e p sia doppia della rimanente p m, p sarà il centro di gravità dell'intera grandezza circoscritta: inoltre, poiché e p è doppia di p m, mentre ae è minore del doppio di em (poiché le è eguale), l'intera ae risulterà minore del triplo della ep ; perciò ep sarà maggiore della en. Inoltre, essendo la e m tripla della mp ed essendo [la somma di] me col doppio di e a parimenti tripla della me, allora l'intera ae, insieme con la ae , sarà tripla della ep . Ma ae è tripla della en; perciò la rimanente ae sarà tripla della rimanente p n. Pertanto np è la sesta parte della au. Questo è appunto quanto si doveva dimostrare.

Da ciò è manifesto che in un conoide parabolico è possibile inscrivere una figura e circoscriverne un'altra, in modo che i loro centri di gravità distino dal punto n meno di qualunque linea data. Se, infatti, data una linea, ne prendiamo un'altra sei volte maggiore, e se facciamo gli assi dei cilindri, dai quali sono costituite le figure, minori della linea così presa; allora le linee che si trovano fra il centro di gravità di ciascuna di queste figure e il punto n, saranno minori della linea data.

ALTRA DIMOSTRAZIONE DELLO STESSO

Figura 85

L'asse di un conoide, che sia cd, venga diviso in o in modo che co sia doppia di od. Bisogna mostrare che il centro di gravità della figura inscritta si trova sulla linea od, mentre il centro di quella circoscritta si trova sulla co. Le figure siano intersecate da un piano [passante] per l'asse e per c, come si è detto. Ordunque, poiché i cilindri sn, tm, vi, xe stanno tra loro come i quadrati delle linee sd, tn, vm, xi; [poiché] d'altra parte questi [quadrati] stanno tra di loro come le linee nc, cm, ci, ce; [poiché] inoltre queste [linee] si eccedono egualmente e gli eccessi sono eguali alla minima, cioè alla ce; e [poiché] il cilindro tm è eguale al cilindro qn, mentre il cilindro vi è eguale al cilindro pn, e il cilindro xe è eguale al cilindro ln; dunque, i cilindri sn, qn, pn, ln si eccedono egualmente e gli eccessi sono eguali al minimo di essi, cioè al cilindro ln. Ma l'eccesso del cilindro sn sul cilindro qn è un anello, la cui altezza è qt, cioè nd, e la cui larghezza è sq; l'eccesso del cilindro qn sul cilindro pn è un anello, la cui larghezza è qp; infine l'eccesso del cilindro pn sul cilindro ln è un anello, la cui larghezza è pl. Perciò i suddetti anelli sq, qp, pl sono eguali [equivalenti] tra di loro e al cilindro ln. L'anello st è pertanto eguale al cilindro xe; l'anello qv, doppio dell'anello st, è eguale al cilindro vi, il quale è similmente doppio del cilindro xe; e per la stessa ragione, l'anello px sarà eguale al cilindro tm, e il cilindro le al cilindro sn. Pertanto, sulla bilancia kf, la quale unisce i punti medi delle rette ei e dn ed è intersecata in parti eguali nei punti h e g, si trovano delle grandezze, cioè i cilindri sn, tm, vi, xe; e il centro di gravità del primo cilindro è k, quello del secondo è h, quello del terzo è g, e quello del quarto è f. Ma abbiamo anche un'altra bilancia mk, che è la metà della fk, e che è divisa da altrettanti punti in parti eguali, cioè mh, hn, nk; su di essa si trovano altre grandezze, le quali sono eguali in numero e grandezza a quelle che si trovano sulla bilancia fk, e hanno i [rispettivi] centri di gravità nei punti m, h, n, k, e sono disposte nel medesimo ordine. Il cilindro le ha infatti il centro di gravità in m, ed è eguale al cilindro sn, che ha il centro di gravità in k; l'anello px ha il centro di gravità in h, ed è eguale al cilindro tm, il cui centro di gravità è h; l'anello qv, avente il centro di gravità in n, è eguale al cilindro vi, il cui centro è g; infine l'anello st, avente il centro di gravità in k, è eguale al cilindro xe, il cui centro è f. Pertanto, il centro di gravità delle suddette grandezze divide la bilancia secondo la medesima proporzione: ma il loro centro è unico, e perciò è un qualche punto comune ad entrambe le bilance, il quale [punto] sia y. Pertanto fy starà a yk come ky a ym; dunque, fy è doppia della yk; e divisa la ce a metà in z, zf sarà doppia di kd, e di conseguenza zd sarà tripla della dy. Ma della retta do è tripla la cd: dunque, la retta do è maggiore della dy; e perciò il centro di gravità y della figura inscritta è più vicino del punto o alla base. E poiché, come cd sta a do, così la parte tolta zd sta alla parte tolta dy, allora anche la parte rimanente cz starà alla parte rimanente yo come cd sta a do: cioè yo sarà la terza parte della cz, cioè la sesta parte della ce. Con identico procedimento mostreremo, d'altra parte, che i cilindri della figura circoscritta si eccedono egualmente, che gli eccessi sono eguali al cilindro minimo, e che i loro centri di gravità sono situati sulla bilancia kz a distanze eguali; inoltre [dimostreremo] parimenti che anelli eguali ai medesimi cilindri sono similmente disposti sull'altra bilancia kg, che è la metà della bilancia kz; e che, perciò, il centro di gravità della figura circoscritta, il quale sia r, divide le bilance in modo che zr stia ad rk, come kr sta ad rg. Dunque, zr sarà doppia della rk; ma cz sarà eguale alla retta kd, e non doppia: l'intera cd sarà allora minore del triplo della dr; perciò la retta dr è maggiore della do: ovverossia, il centro di gravità della figura circoscritta è più distante del punto o dalla base. E poiché zk è tripla della kr, e [la somma di] kd col doppio di zc è tripla di kd, l'intera cd, insieme con cz, sarà tripla della dr. Ma cd è tripla della do: perciò la parte rimanente cz sarà tripla dell'altra parte rimanente ro: cioè or è la sesta parte della ec. Che è quello che ci eravamo proposti.

Fatte queste dimostrazioni iniziali, si dimostra ora che il centro di gravità di un conoide parabolico divide l'asse in modo tale che la parte verso il vertice è doppia della rimanente parte verso la base.

Figura 86

Sia un conoide parabolico, il cui asse ab venga diviso in n in modo che an sia doppia di nb. Bisogna mostrare che il centro di gravità del conoide è il punto n. Infatti, se non è n, si troverà o sotto o sopra di esso. In primo luogo [immaginiamo che] si trovi sotto, e sia esso x: si ponga a parte la linea lo, eguale alla nx, e la si divida a caso in s; e qual è la proporzione che [la somma di] ambedue le bx e os ha rispetto a os, tale sia anche la proporzione che il conoide ha rispetto al solido r: si inscriva nel conoide una figura [costituita] da cilindri aventi eguale altezza, in modo che la linea compresa tra il centro di gravità di essa [figura] e il punto n sia minore della linea ls, e l'eccesso, per il quale [quella figura] viene superata dal conoide, sia minore del solido r. Che poi ciò sia possibile, è manifesto. Sia pertanto inscritta [la figura], il cui centro di gravità sia i: sarà allora ix maggiore di so; poiché abbiamo che, come [la somma di] xb con so sta ad so, così il conoide sta ad r (ma r è maggiore dell'eccesso per il quale il conoide supera la figura inscritta), la proporzione del conoide al suddetto eccesso sarà maggiore della proporzione che [la somma di] ambedue le bx e os ha rispetto ad so: scomponendo, la figura inscritta avrà, rispetto al suddetto eccesso, una proporzione maggiore della proporzione di bx ad so. Ma la proporzione di bx a xi è ancora minore di quella che [la medesima bx] ha ad so: la figura inscritta avrà, pertanto, rispetto alle rimanenti porzioni, una proporzione molto maggiore di quella che bx ha ad xi. Pertanto, quale è la proporzione che la figura inscritta ha rispetto alle rimanenti porzioni, tale sarà anche la proporzione di un'altra linea qualsiasi a xi; [linea] che risulterà necessariamente maggiore di bx. Sia essa, pertanto, mx. Abbiamo così in x il centro di gravità del conoide, e in i quello della figura inscritta: dunque, il centro di gravità delle rimanenti porzioni, per le quali il conoide eccede la figura inscritta, si troverà sulla linea xm, e precisamente in quel punto che determinerebbe su di essa una linea tale, che il rapporto di quest'ultima a xi sia eguale alla proporzione che la figura inscritta ha rispetto all'eccesso, per il quale è superata dal conoide. Ma si è mostrato che tale proporzione è appunto quella che mx ha a xi: sarà dunque m il centro di gravità delle porzioni, per le quali il conoide eccede la figura inscritta. Il che non è certamente possibile: infatti, se per m si conduce un piano equidistante dalla base del conoide, tutte le porzioni suddette si troveranno da una stessa parte, e non saranno divise da esso. Pertanto, il centro di gravità del conoide non si trova al di sotto del punto n. Ma nemmeno [si trova] sopra. Infatti, qualora sia possibile, [immaginiamo che] esso sia h; e, di nuovo, come sopra, si ponga a parte la linea lo eguale alla hn, e la si divida a caso in s; e quale è la proporzione che [la somma di] entrambe le bn ed so ha ad sl, tale sia anche la proporzione che il conoide ha ad r; si circoscriva al conoide una figura [costituita] da cilindri nel modo che si è detto, la quale sia eccedente [rispetto al conoide] per una quantità minore del solido r; e la linea [compresa] tra il centro di gravità della figura circoscritta e il punto n sia minore di so: la restante uh sarà maggiore di ls; e poiché abbiamo che, come [la somma di] entrambe le bn e os sta ad sl, così il conoide sta ad r (ma r è maggiore dell'eccesso, per il quale il conoide è superato dalla figura circoscritta), dunque [la somma di] bn e os avrà rispetto ad sl una proporzione minore di quella che il conoide ha rispetto al suddetto eccesso. Ma bu è minore [della somma] di bn e os; uh, invece, è maggiore di sl: pertanto il conoide avrà rispetto alle suddette porzioni una proporzione molto maggiore di quella che bu ha ad uh. Pertanto, quale è la proporzione che il conoide ha rispetto a quelle medesime porzioni, tale sarà pure la proporzione che una linea maggiore della bu avrà rispetto alla uh. L'abbia, dunque, e sia essa mu; poiché il centro di gravità della figura circoscritta è u, e il centro di gravità del conoide è h, e poiché abbiamo inoltre che, come il conoide sta alle porzioni rimanenti, così mu sta a uh, sarà allora m il centro di gravità di quelle porzioni rimanenti: il che è similmente impossibile. Il centro di gravità del conoide non si trova dunque al di sopra del punto n: ma si è dimostrato che non si trova neppure al di sotto: resta dunque che esso debba necessariamente trovarsi proprio in n. E col medesimo procedimento ciò si dimostrerà di un conoide intersecato da un piano non perpendicolare all'asse. In altre parole, ma è la stessa cosa, come risulta nel [teorema] seguente, il centro di gravità di un conoide parabolico va a cadere tra il centro della figura circoscritta e il centro di quella inscritta.

Figura 87

Sia un conoide avente asse ab: il centro della figura circoscritta sia c, e quello della figura inscritta sia o. Dico, che il centro del conoide si trova tra i punti c e o. Infatti, se ciò non fosse, dovrà trovarsi o al di sopra, o al di sotto, o in uno di essi. Sia al di sotto, ad esempio in r: poiché r è il centro di gravità dell'intero conoide e o il centro di gravità della figura inscritta, dunque il centro di gravità di tutte le altre porzioni, per le quali la figura inscritta è superata dal conoide, si troverà sul prolungamento della linea or dalla parte di r, e precisamente in quel punto che delimita [questo prolungamento] in modo che, quale è la proporzione delle dette porzioni alla figura inscritta, tale sia anche la proporzione che la linea or ha rispetto alla linea compresa tra r e quel punto. Questa proporzione sia quella che or ha ad rx. Pertanto x andrà a cadere o al di fuori del conoide, o al di dentro, oppure sulla base stessa. Sia [l'ipotesi] che esso cada al di fuori, sia [quella] che esso cada sulla base, risultano già manifestamente assurde. [Supponiamo che] vada a cadere all'interno: poiché xr sta ad ro, come la figura inscritta sta all'eccesso, per il quale essa è superata dal conoide, poniamo che, quale è la proporzione di br ad ro, tale sia anche quella che la figura inscritta ha rispetto al solido k, il quale dovrà essere necessariamente minore del suddetto eccesso; si inscriva poi un'altra figura, la quale sia superata dal conoide per un eccesso minore di k: il suo centro di gravità cadrà tra o e c. Sia esso u: poiché la prima figura sta a k come br sta ad ro, e poiché, d'altra parte, la seconda figura, il cui centro é u, è maggiore della prima ed è superata dal conoide per un eccesso minore di k, si avrà allora che, quale è la proporzione che la seconda figura ha rispetto all'eccesso, per il quale essa è superata dal conoide, tale è anche la proporzione che una linea maggiore della br ha rispetto alla linea ru. Ma il centro di gravità del conoide è r, mentre quello della figura inscritta è u: dunque, il centro di gravità delle rimanenti porzioni si troverà al di fuori del conoide, al di sotto di b; il che è impossibile. E col medesimo procedimento si dimostrerà che il centro di gravità del medesimo conoide non si trova sulla linea ca. Che poi esso non sia né l'uno né l'altro dei due punti c e o, ciò è manifesto. Infatti, qualora supponessimo ciò, descritte [due] altre figure, tali che quella inscritta sia maggiore della figura il cui centro è o, e quella circoscritta sia minore della figura il cui centro è c, il centro di gravità del conoide andrebbe a cadere fuori del centro di gravità di tali figure: il che è impossibile, come abbiamo testé concluso. Ne consegue, dunque, che esso si trova compreso tra il centro della figura circoscritta e quello della figura inscritta. Se è così, dovrà trovarsi necessariamente in quel punto che divide l'asse in modo che la parte verso il vertice sia doppia della rimanente. Infatti, poiché si possono inscrivere e circoscrivere figure tali, che le linee comprese tra il loro centro di gravità e il punto suddetto siano minori di qualunque linea data, chi affermasse cosa diversa verrebbe condotto a questo assurdo: che, cioè, il centro del conoide non si trovi tra i centri della figura inscritta e di quella circoscritta.

Se vi sono tre linee proporzionali, e si prende un'altra linea qualsiasi, tale che la proporzione che essa ha rispetto ai due terzi dell'eccesso, per il quale la massima supera la media, sia eguale alla proporzione che la minima ha rispetto all'eccesso, per il quale la massima supera la minima; se inoltre si prende ancora un'altra linea tale, che la proporzione che essa ha rispetto all'eccesso, per il quale la massima supera la media, sia eguale alla proporzione che la linea, composta dalla massima e dal doppio della media, ha rispetto alla linea composta dal triplo della massima e della media; [la somma di] ambedue le linee prese insieme sarà [eguale al] la terza parte della massima tra le linee proporzionali.

Figura 88

Siano tre linee proporzionali ab, bc, bf: e quale è la proporzione che bf ha ad af, tale sia anche quella che ms ha rispetto ai due terzi della ca; inoltre, quale è la proporzione che la linea composta da ab e dal doppio di bc ha rispetto alla linea composta dal triplo di ambedue le ab e bc, tale sia anche la proporzione che un'altra linea, cioè sn, ha ad ac. Bisogna dimostrare che mn è la terza parte della ab. Pertanto, poiché ab, bc, bf sono proporzionali, anche ac e cf si troveranno nel medesimo rapporto: perciò, come ab sta a bc, così ac sta cf; e come il triplo di ab al triplo di bc, così ac a cf. Pertanto, quale è la proporzione che [la somma del] triplo di ab col triplo di bc ha rispetto al triplo di cb, tale sarà anche la proporzione che ac ha a una linea minore della cf. Sia essa co. Perciò, componendo e per conversione della proporzione [invertendo], oa avrà ad ac la medesima proporzione che [la somma del] triplo di ab col sestuplo di bc ha rispetto al [la somma del] triplo di ab col triplo di bc: ma ac ha ad sn la medesima proporzione che [la somma del] triplo di ab col triplo di bc ha rispetto al [la somma di] ab col doppio di bc: ex aequali, dunque, oa avrà ad ns la medesima proporzione che [la somma del] triplo di ab col sestuplo di bc ha rispetto al [la somma di] ab col doppio di bc. Ora, [la somma del] triplo di ab col sestuplo di bc è eguale a tre volte [la somma di] ab col doppio di bc: dunque, ao è tripla di sn.

Inoltre, poiché oc sta a ca come il triplo di cb sta alla somma del triplo di ab col triplo di cb; e poiché come ca sta a cf, così il triplo di ab al triplo di bc; dunque, ex aequali, in proporzione perturbata, si avrà che, come oc sta a cf, così il triplo di ab sta alla somma del triplo di ab col triplo di bc, e, per conversione della proporzione, come of sta ad fc, così il triplo di bc sta alla somma del triplo di ab col triplo di bc. Ma come cf sta ad fb, così ac sta a cb, e il triplo di ac al triplo di bc; ex aequali, dunque, in proporzione perturbata, si avrà che, come of sta ad fb, così il triplo di ac sta al triplo di ambedue le ab e bc insieme. Pertanto [componendo] l'intera ob starà alla bf come il sestuplo di ab sta al triplo di ambedue le ab e bc; e poiché fc e ca stanno tra di loro nella medesima proporzione che cb e ba, si avrà che, come fc sta a ca, così bc sta a ba, e, componendo, come fa sta ad ac, così [la somma di] ambedue le ba e bc sta a ba, e così il triplo sta al triplo: dunque, come fa sta ad ac, così la linea composta dal triplo di ba e dal triplo di bc sta al triplo di ab; perciò come fa sta ai due terzi della ac, così la linea composta dal triplo di ba e dal triplo di bc sta ai due terzi del triplo di ba, cioè al doppio di ba. Ma come fa sta ai due terzi della ac, così fb sta ad ms; dunque, come fb sta ad ms, così la linea composta dal triplo di ba e dal triplo di bc sta al doppio di ba. Ma come ob sta ad fb, così il sestuplo di ab stava al triplo di ambedue le ab e bc: dunque, ex aequali, ob avrà ad ms la medesima proporzione che il sestuplo di ab al doppio di ba; perciò ms sarà la terza parte della ob. Si è anche dimostrato che sn è la terza parte di ao: risulta dunque che mn è, similmente, la terza parte di ab. E ciò è quello che si doveva dimostrare.

Il centro di gravità di un qualsiasi frusto [tronco] staccato da un conoide parabolico si trova sulla linea retta che è l'asse del frusto; diviso tale asse in tre parti eguali, il centro di gravità si trova nella parte di mezzo e la divide in modo che la parte verso la base minore avrà rispetto alla parte verso la base maggiore, la medesima proporzione che la base maggiore ha rispetto alla base minore.

Figura 89

Dal conoide, il cui asse è rb, sia staccato il solido, il cui asse è be, e il piano secante [con cui è operata tale scissione] sia equidistante dalla base; si faccia inoltre una sezione per mezzo di un altro piano passante per l'asse perpendicolare alla base: tale sezione della parabola [sezione del conoide, la quale genera una parabola] sia urc; inoltre le intersezioni di quest'ultimo piano col piano secante e con la base siano [rispettivamente] le linee rette lm ed uc: rb sarà il diametro di proporzione, o sarà equidistante dal diametro; lm e uc saranno ordinatamente applicate ad esso. Si divida, pertanto, eb in tre parti eguali, tra le quali la parte media sia qy; ora quest'ultima sia divisa dal punto i in modo che, quale è la proporzione della base, il cui diametro è uc, alla base, il cui diametro è lm, cioè del quadrato di uc al quadrato di lm, tale sia anche la proporzione di qi a iy. Bisogna dimostrare che i è il centro di gravità del frusto lmc. Si ponga a parte la linea ns eguale alla br, e sx sia eguale ad er; inoltre si prenda sg terza proporzionale delle linee ns ed sx; infine, quale è la proporzione che ng ha a gs, tale sia anche quella che la linea bq ha rispetto a io. Non importa che il punto o si trovi sopra o sotto la lm. Poiché nella sezione urc le linee lm e uc sono ordinatamente applicate, si avrà che, come il quadrato di uc sta al quadrato di lm, così la linea br sta alla linea re: ma come il quadrato uc sta al quadrato lm, così qi sta a iy, e come br sta ad re, così ns ad sx; dunque, qi sta a iy come ns ad sx. Perciò, come qy sta a yi, così [la somma di] ambedue le ns ed sx starà ad sx, e come eb sta a yi, così la linea composta dal triplo di ns e dal triplo di sx starà ad sx: ma come eb sta a by, così la linea composta dal triplo di ambedue le ns ed sx insieme sta alla linea composta da ns ed sx: dunque, come eb sta a bi, così la linea composta dal triplo di ns e dal triplo di sx sta alla linea composta da ns e dal doppio di sx. Le tre linee ns, sx, gs sono dunque proporzionali; e quale è la proporzione che sg ha a gn, tale è anche la proporzione che la linea presa oi ha rispetto ai due terzi della eb, cioè della nx; inoltre, quale è la proporzione che la linea composta da ns e dal doppio di sx, ha rispetto alla linea composta dal triplo di ns e dal triplo di sx, tale è anche la proporzione che l'altra linea presa ib ha rispetto a be, cioè rispetto a nx. Pertanto, per le cose che si sono sopra dimostrate, queste linee, prese insieme, saranno la terza parte della ns, cioè della rb; rb è dunque tripla della bo: perciò o sarà il centro di gravità del conoide urc. Sia poi a il centro di gravità del conoide lrm; dunque, il centro di gravità del frusto ulmc si trova sulla linea ob, e precisamente in quel punto che la delimita in modo che, quale è la proporzione che il frusto ulmc ha rispetto alla porzione lrm, tale sia anche la proporzione che la linea ao ha rispetto alla linea compresa tra o e il punto suddetto. E poiché ro è due terzi della rb, ed ra i due terzi della re; la rimanente ao sarà i due terzi della rimanente eb. E poiché abbiamo che, come il frusto ulmc sta alla porzione lrm, così ng sta a gs; e che, come ng sta a gs, così i due terzi di eb stanno a oi; e poiché, d'altra parte, ai due terzi di eb è eguale la linea ao; si avrà allora che, come il frusto ulmc sta alla porzione lrm, così ao sta a oi. Risulta, dunque, che il centro di gravità del frusto ulmc è il punto i, e che esso divide l'asse in modo che la parte verso la base minore sta alla parte verso la base maggiore come [la somma del] doppio della base maggiore con la base minore sta al [la somma del] doppio della minore con la maggiore. Il che è ciò che ci eravamo proposti, spiegato più elegantemente.

Se un numero qualsiasi di grandezze sono disposte tra loro [in rapporto tale] che la seconda sia superiore alla prima del doppio della prima, la terza sia superiore alla seconda del triplo della prima, la quarta sia superiore alla terza del quadruplo della prima, e così ciascuna delle grandezze che si susseguono sia superiore a quella immediatamente precedente di una grandezza multipla della prima secondo il numero [corrispondente alla posizione] che essa stessa occupa nell'ordine; se - dico - queste grandezze vengono ordinatamente appese ad eguali distanze su una bilancia, il centro di equilibrio del composto di tutte [le grandezze] dividerà la bilancia in modo che la parte verso le grandezze minori sarà tripla dell'altra [parte].

Figura 90

Sia la bilancia LT; ad essa siano appese delle grandezze, tali quali abbiamo detto, e siano A, F, G, H, K, la prima delle quali sia A, appesa in T. Dico che il centro di equilibrio interseca la bilancia TL in modo che la parte verso T è tripla dell'altra. Sia TL tripla di LI, SL tripla di LP, QL lo sia di LN, ed LP di LO: IP, PN, NO, OL risulteranno eguali. Si prenda in F una grandezza doppia di A, in G se ne prenda un'altra tripla della medesima, in H una quadrupla, e così via; le grandezze, che abbiamo prese, siano quelle segnate da a. E si faccia lo stesso con le grandezze F, G, H, K: infatti, poiché in F la grandezza rimanente, cioè b, è eguale ad A, in G se ne prenda una doppia, in H una tripla, ecc.; e queste grandezze prese siano quelle segnate da b; e allo stesso modo si prendano le grandezze segnate da c, e quelle segnate da d e da e. Tutte le grandezze segnate da a [ossia la loro somma] saranno allora eguali a K; la grandezza composta da tutte le b sarà eguale ad H; quella composta dalle c, sarà eguale a G; quella composta da tutte le d, sarà eguale ad F; ed e sarà eguale ad A. Poiché TI è doppia di IL, I sarà il punto dell'equilibrio della grandezza composta da tutte le a; e, similmente, essendo SP doppia di PL, P sarà il punto dell'equilibrio di quella composta da tutte le b; e, per la stessa ragione, N sarà il punto dell'equilibrio della grandezza composta da tutte le c; O lo sarà di quella composta dalle d; ed L [sarà il punto dell'equilibrio] della e. Abbiamo dunque una bilancia TL, alla quale sono appese ad eguali distanze alcune grandezze K, H, G, F, A; e, inoltre, abbiamo un'altra bilancia LI, sulla quale, a distanze similmente eguali, sono appese un altrettanto numero di grandezze, eguali alle predette e disposte nel medesimo ordine: infatti, la grandezza composta da tutte le a, la quale è appesa in I, è eguale alla grandezza K appesa in L; quella composta da tutte le b, la quale è appesa in P, è eguale alla H appesa in P; e, similmente, la grandezza composta dalle c, la quale è appesa in N, è eguale alla G; quella composta dalle d, la quale è appesa in O, è eguale alla F; e infine la e, appesa in L, è eguale alla A. Perciò il centro del composto delle grandezze dividerà le bilance secondo la medesima proporzione: ma uno solo è il centro della grandezza composta dalle grandezze predette: esso sarà dunque un punto comune alla retta TL e alla retta LI; sia esso X. Pertanto, come TX sta a XL, così LX starà a XI, e l'intera TL starà ad LI: ma TL è tripla della LI: perciò anche TX sarà tripla della XL.

Se si prendono un numero qualsiasi di grandezze in modo che la seconda sia superiore alla prima del triplo della prima, la terza sia superiore alla seconda del quintuplo della prima, la quarta sia superiore alla terza di sette volte la prima, e così di seguito l'aumento di ciascuna [grandezza] rispetto alla immediatamente precedente sia multiplo della prima grandezza secondo i numeri impari successivi, [cioè le grandezze] si succedano come i quadrati di linee egualmente eccedentisi l'una l'altra e il cui eccesso sia eguale alla minima; e se [tali grandezze] vengono appese a distanze eguali su una bilancia: il centro dell'equilibrio del composto di tutte [le grandezze] dividerà la bilancia in modo che la parte verso le grandezze minori risulterà maggiore del triplo dell'altra [parte], ma minore del triplo della medesima, qualora si tolga una distanza.

Figura 91

Sulla bilancia BE siano delle grandezze, tali quali si è detto; dalle quali [immaginiamo che] ne vengano tolte alcune, le quali stiano tra di loro nella medesima proporzione in cui erano disposte le grandezze del [teorema] precedente; e siano quelle composte da tutte le a; le altre, segnate da c, saranno distribuite nel medesimo ordine, ma saranno prive della grandezza massima. ED sia tripla di DB, e GF tripla di FB; D sarà il centro dell'equilibrio della grandezza composta da tutte le a; F, quello della grandezza composta da tutte le c: perciò il centro della grandezza composta da tutte le a e le c andrà a cadere tra D ed F. Sia esso O. pertanto manifesto che EO è più del triplo della OB, mentre GO è meno del triplo della OB. Che è quello che si doveva dimostrare.

Se in un cono qualsiasi, o in una porzione di cono, si inscrive una figura [costituita] da cilindri aventi eguale altezza, e se ne circoscrive un'altra, e se, inoltre, l'asse del cono viene diviso in modo che la parte compresa tra il punto di divisione e il vertice sia tripla dell'altra; il centro di gravità della figura inscritta sarà più vicino del suddetto punto di divisione alla base del cono, mentre il centro di gravità della figura circoscritta sarà più vicino al vertice del medesimo punto.

Figura 92

Sia dunque un cono, il cui asse nm sia diviso in s in modo che ns sia tripla della rimanente sm. Dico, che il centro di gravità di qualsiasi figura, inscritta al cono nel modo che si è detto, si trova sull'asse nm ed è più vicino del punto s alla base del cono; mentre il centro di gravità della figura circoscritta si trova similmente sull'asse nm, ed e piu vicino di s al vertice. Si intenda, pertanto, la figura inscritta [costituita] da cilindri, i cui assi mc, cb, be, ea siano eguali. Ordunque, il primo cilindro, il cui asse è mc, rispetto al cilindro, il cui asse è cb, ha la medesima proporzione che la sua base ha rispetto alla base dell'altro (infatti, le loro altezze sono eguali); ma questa proporzione è eguale a quella che il quadrato cn ha al quadrato nb. E similmente si mostrerà che il cilindro, il cui asse è cb, rispetto al cilindro, il cui asse è be, ha la medesima proporzione che il quadrato bn ha rispetto al quadrato ne; mentre il cilindro, il cui asse è be, rispetto al cilindro, [che sta] intorno all'asse ea, ha la medesima proporzione che il quadrato en ha rispetto al quadrato na. Ora, le linee nc, nb, en, na si eccedono egualmente tra di loro, e i loro eccessi sono eguali alla minima, cioè alla na. Vi sono pertanto alcune grandezze, cioè i cilindri inscritti, tali che stanno tra di loro successivamente nella medesima proporzione in cui si trovano i quadrati di linee che si eccedono egualmente e i cui eccessi siano eguali alla minima: e [quei cilindri] sono disposti sulla bilancia ti in modo che i loro singoli centri di gravità si trovino su di essa ad eguali distanze. Per le cose che si sono sopra dimostrate, risulta pertanto che il centro di gravità del composto di tutti [i cilindri] divide la bilancia ti in modo che la parte verso t sia più del triplo dell'altra. Sia o questo centro; to, dunque, è più che tripla della oi. Ma tn è tripla della im; dunque, l'intera mo sarà minore della quarta parte dell'intera mn, della quale si è posta quarta parte la ms. Ne risulta dunque che il punto o è più vicino di s alla base del cono. D'altra parte, sia poi circoscritta una figura costituita da cilindri, i cui assi mc, cb, be, ea, an sono eguali tra loro. Similmente, come per i cilindri inscritti, si mostrerà che essi [cilindri circoscritti] stanno tra loro come i quadrati delle linee mn, nc, bn, ne, an, le quali si eccedono egualmente e il cui eccesso è eguale alla minima an; perciò, per la precedente [proposizione], il centro di gravità del composto di tutti i cilindri così disposti, il quale [centro] sia u, divide la bilancia ri in modo che la parte verso r, cioè ru, è più che tripla dell'altra [parte] ui; tu, invece, è minore del triplo della medesima. Ma nt è tripla della im; dunque, l'intera um è maggiore della quarta parte dell'intera mn, della quale si è posta quarta parte la ms. Pertanto il punto u è più vicino del punto s al vertice. Che è quello che si doveva mostrare.

Dato un cono, è possibile circoscrivere ad esso una figura e inscrivergliene un'altra, [costituite] da cilindri aventi eguale altezza, in modo che la linea compresa tra il centro di gravità della figura circoscritta e il centro di gravità di quella inscritta, sia minore di qualsiasi linea assegnata.

Figura 93

Sia dato un cono, il cui asse sia ab; sia inoltre assegnata la retta k. Dico: si ponga a parte il cilindro l, eguale a quello che sia inscrivibile nel cono e abbia per altezza la metà dell'asse ab; si divida poi ab in c, in modo che ac sia tripla della cb, e quale è la proporzione che ac ha rispetto a k, tale sia anche la proporzione che il cilindro l ha rispetto al solido x: si circoscriva poi al cono una figura [costituita] da cilindri aventi eguale altezza, e gli se ne inscriva un'altra, in modo che la figura circoscritta ecceda quella inscritta per una quantità minore del solido x; il centro di gravità della figura circoscritta sia e, il quale cadrà al di sopra di c; il centro della figura inscritta sia, invece, s, che cadrà al di sotto di c. Dico allora che la linea es è minore della k. Infatti, qualora non lo fosse, si ponga eo eguale alla ca: pertanto, poiché oe ha rispetto a k la medesima proporzione che l ha ad x, poiché inoltre la figura inscritta non è minore del cilindro l, mentre l'eccesso, per il quale tale figura è superata da quella circoscritta, è minore del solido x: la figura inscritta avrà pertanto rispetto al suddetto eccesso una proporzione maggiore di quella che oe ha rispetto a k. Ma la proporzione di oe a k non è minore di quella di oe ad es, poiché es non si pone minore di k: pertanto la figura inscritta rispetto all'eccesso, per il quale è superata dalla figura circoscritta, ha una proporzione maggiore di quella di oe ad es. Quale è dunque la proporzione della figura inscritta al suddetto eccesso, tale sarà la proporzione che una linea maggiore della eo ha rispetto alla linea es. Sia essa er; ora, il centro di gravità della figura inscritta è s, mentre quello della figura circoscritta è e: risulta, dunque, che il centro di gravità delle porzioni rimanenti, per le quali la figura circoscritta supera quella inscritta, si trova sulla linea re, e proprio in quel punto, che la delimita in modo che, quale è la proporzione che la figura inscritta ha rispetto alle dette porzioni, tale sia anche la proporzione che la linea, compresa tra e e quel punto, ha rispetto alla linea es. Ma questa è la proporzione che re ha ad es; dunque, il centro di gravità delle rimanenti porzioni, per le quali la figura circoscritta supera quella inscritta, sarà r: ciò che è impossibile; infatti il piano condotto per r ed equidistante dalla base del cono non interseca le suddette porzioni. pertanto falso che la linea es non sia minore della k; sarà dunque minore. Si dimostrerà poi, in modo analogo, che ciò è possibile anche per una piramide.

Da ciò è manifesto che a un cono dato è possibile circoscrivere una figura e inscriverne un'altra, [costituite] da cilindri aventi eguale altezza, in modo che le linee, le quali sono comprese tra i loro centri di gravità e il punto che divide l'asse del cono in modo che la parte verso il vertice è tripla dell'altra, siano minori di una qualunque linea data. Infatti, poiché, come si è dimostrato, il detto punto, che divide l'asse nel modo che si è detto, si trova sempre tra i centri di gravità della figura circoscritta e di quella inscritta; e poiché la linea, che è intermedia tra quei medesimi centri di gravità, può essere fatta minore di una qualsiasi linea assegnata; sarebbe molto minore della medesima linea assegnata quella linea che è compresa tra uno dei due centri e il suddetto punto che divide l'asse.

In qualsiasi cono o piramide il centro di gravità divide l'asse in modo che la parte verso il vertice è tripla della rimanente [parte] verso la base.

Figura 94

Sia un cono, il cui asse ab sia diviso in c in modo che ac sia tripla della rimanente cb: bisogna mostrare che c è il centro di gravità del cono. Infatti, se non lo è, il centro del cono sarà o al di sopra o al di sotto del punto c. In primo luogo [immaginiamo che] sia al di sotto, e sia e; si ponga a parte la linea lp eguale a ce, e la si divida a caso in n; e quale è la proporzione che [la somma di] ambedue le be e pn insieme ha rispetto a pn, tale sia la proporzione che il cono ha al solido x; si inscriva poi al cono una figura solida [costituita] da cilindri aventi eguale altezza, [figura] il cui centro di gravità si trovi a una distanza dal punto c più breve della linea ln; e l'eccesso, per il quale essa è superata dal cono, sia minore del solido x. Che ciò sia possibile è, infatti, manifesto per le cose dimostrate. Sia allora inscritta, nel modo richiesto, la figura, il cui centro di gravità sia i. Pertanto, la linea ie sarà maggiore della np, essendo lp eguale a ce; e ic sarà minore di ln: e poiché [la somma di] ambedue le be ed np sta ad np come il cono sta a x, mentre l'eccesso, per il quale il cono supera la figura inscritta, è minore del solido x, dunque il cono avrà rispetto al suddetto eccesso una proporzione maggiore di quella che [la somma di] ambedue le be ed np ha ad np; e, scomponendo, la figura inscritta avrà rispetto all'eccesso, per il quale essa è superata dal cono, una proporzione maggiore di quella che [be] ha ad np. Ma be ha ad ei una proporzione ancora minore di quella che be ha ad np, essendo ie maggiore di np; dunque, la figura inscritta avrà rispetto all'eccesso, per il quale è superata dal cono, una proporzione molto maggiore di quella che be ha ad ei. Pertanto, quale è la proporzione che la figura inscritta ha rispetto al suddetto eccesso, tale sarà la proporzione che rispetto ad ei avrà una linea maggiore della be. Sia essa me: poiché, dunque, me sta ad ei come la figura inscritta sta all'eccesso, per il quale è superata dal cono, e poiché e è il centro di gravità del cono, mentre i è il centro di gravità della figura inscritta, sarà allora m il centro di gravità delle porzioni rimanenti, per le quali il cono eccede la figura che gli è inscritta; ciò che è impossibile. Pertanto il centro di gravità del cono non si trova al di sotto del punto c. Ma neppure [si troverà] sopra. Infatti, se è possibile, sia esso r; e inoltre si prenda la linea lp, divisa a caso in n; e quale è la proporzione che [la somma di] ambedue le bc ed np ha ad nl, tale sia la proporzione che il cono ha ad x; e similmente si circoscriva al cono una figura, dalla quale esso sia superato per una quantità minore del solido x; infine la linea, compresa tra il centro di gravità di quella [figura circoscritta] e c, sia minore della np. Sia, dunque, o il centro di gravità della figura circoscritta: la rimanente or sarà maggiore della nl. E poiché, come [la somma di] ambedue le bc e pn sta ad nl, così il cono sta a x, mentre l'eccesso, per il quale il cono è superato dalla figura circoscritta, è minore di x, e poiché la bo è minore [della somma] di ambedue le bc e pn, mentre la or è maggiore della ln; il cono, dunque, rispetto alle rimanenti porzioni, per le quali è superato dalla figura circoscritta, avrà una proporzione molto maggiore di quella che bo ha ad or. Tale sia la proporzione di mo a or: mo sarà maggiore di bc; ed m sarà il centro di gravità delle porzioni, per le quali il cono è superato dalla figura circoscritta; il che è sconveniente. Il centro di gravità del cono non si trova, dunque, al di sopra del punto c: ma, come si è mostrato, neppure si trova al di sotto: dunque, esso sarà lo stesso c. La stessa cosa, e con identico procedimento, si dimostrerà per una piramide qualsiasi.

[LEMMA]
Se si hanno quattro linee in proporzione continua; e se, quale è la proporzione che la minima di esse ha rispetto all'eccesso, per il quale la massima supera la minima, tale sia anche la proporzione che una linea [opportunamente] presa ha rispetto ai dell'eccesso, per il quale la massima supera la seconda; se, inoltre, quale è la proporzione che la linea eguale alla [somma della] massima, col doppio della seconda e col triplo della terza, ha rispetto alla linea eguale al [la somma del] quadruplo della massima, col quadruplo della seconda e col quadruplo della terza, tale sia la proporzione che un'altra linea [opportunamente] presa ha rispetto all'eccesso, per il quale la massima supera la seconda: queste due [ultime] linee, prese insieme [ossia la loro somma], saranno la quarta parte della massima delle [linee] proporzionali [considerate].

Figura 95

Siano infatti quattro linee proporzionali, ab, bc, bd, be; e quale è la proporzione che be ha ad ea, tale sia anche quella che fg ha rispetto ai della ac; inoltre, quale è la proporzione che la linea, eguale alla [somma di] ab, col doppio di bc e col triplo di bd, ha rispetto alla linea, eguale al quadruplo [della somma] delle ab, bc, bd, tale sia la proporzione che hg ha ad ac. Bisogna mostrare che hf è la quarta parte della ab. Pertanto, poiché le ab, bc, bd, be sono proporzionali, nella medesima proporzione si troveranno anche le ac, cd, de; e come il quadruplo [della somma] delle ab, bc, bd sta alla [somma di] ab col doppio di bc e col triplo di bd, così il quadruplo [della somma] delle ac, cd, de, cioè il quadruplo della ae, sta alla [somma di] ac col doppio di cd e col triplo di de; e così pure ac sta ad hg: dunque, come il triplo della ae sta alla [somma di] ac col doppio di cd e col triplo di de, così i della ac stanno ad hg. Ma come il triplo di ae sta al triplo di eb, così i della ac stanno a gf: dunque, per la reciproca della ventiquattresima del quinto, come il triplo della ae sta alla [somma di] ac col doppio di cd e col triplo di db, così i della ac stanno ad hf; e come il quadruplo della ae sta alla [somma di] ac col doppio di cd e col triplo di db, cioè alla [somma di] ab con cb e bd, così ac sta ad hf; e, permutando, come il quadruplo di ae sta ad ac, così la [somma di] ab con cb e bd sta ad hf; ma come ac sta ad ae, così ab sta alla [somma di] ab con cb e bd: dunque, ex aequali, in proporzione perturbata, come il quadruplo di ae sta ad ae, così ab sta ad hf. Risulta perciò che hf è la quarta parte della ab.

In un qualsiasi frusto di piramide, o di cono, intersecato da un piano equidistante dalla base, il centro di gravità si trova sull'asse, e lo si divide in modo che la parte verso la base minore sta alla [parte] rimanente come [la somma del] triplo della base maggiore col doppio dello spazio che è medio [proporzionale] tra la base maggiore e la minore, sta al [la somma del] triplo della base minore col doppio del medesimo spazio medio [proporzionale] e con la base maggiore.

Figura 96

Dal cono o dalla piramide, il cui asse è ad, per mezzo di un piano secante equidistante dalla base, sia staccato un frusto, il cui asse è ud; e quale è la proporzione che [la somma del] triplo della base maggiore col doppio della media [proporzionale tra la base maggiore e la minore] e con la base minore, ha rispetto al [la somma del] triplo della base minore col doppio della media e con la massima, tale sia la proporzione che uo ha ad od. Bisogna mostrare che o è il centro di gravità del frusto. Sia um quarta parte della ud. Si ponga a parte la linea hx eguale alla ad, e sia kx eguale ad au; inoltre delle hx e kx sia terza proporzionale xl, e quarta proporzionale xs: e quale è la proporzione che hs ha ad sx, tale sia quella che md ha rispetto a una linea presa a partire da o verso a, la quale sia on. E poiché la base maggiore sta a quella, che è media proporzionale tra la maggiore e la minore, come da sta ad au, cioè come hx sta a xk, mentre la detta media sta alla minore come kx sta a xl; la base maggiore, la media e la minore staranno tra di loro nella medesima proporzione [in cui stanno] anche le linee hx, xk, xl. Perciò, come [la somma del] triplo della base maggiore col doppio della media e con la minore, sta al [la somma del] triplo della minima col doppio della media e con la massima, cioè come uo sta a od, così [la somma del] triplo di hx col doppio di xk e con xl, sta al [la somma del] triplo di xl col doppio di xk e con xh; e, componendo e permutando, od starà a du, come la [somma di] hx col doppio di xk e col triplo di xl sta al quadruplo [della somma] delle hx, xk, xl. Si hanno dunque quattro linee proporzionali, hx, xk, xl, xs; e quale è la proporzione che xs ha ad sh, tale è quella che una linea [opportunamente] presa no ha rispetto ai della du, cioè a dm, cioè ai della hk; inoltre, quale è la proporzione che la [somma di] hx col doppio di xk e col triplo di xl ha rispetto al quadruplo [della somma] delle hx, xk, xl, tale è anche la proporzione che un'altra linea [opportunamente] presa od ha rispetto a du, cioè ad hk: dunque (per le cose che si sono dimostrate) dn sarà la quarta parte della hx, cioè della ad; perciò il punto n sarà il centro di gravità del cono, o della piramide, il cui asse è ad. Sia i il centro di gravità del cono, o della piramide, il cui asse è au. Risulta, dunque, che il centro di gravità del frusto si trova sul prolungamento della linea in dalla parte di n, e proprio in quel punto che col punto n delimita una linea tale, che rispetto ad essa in abbia la medesima proporzione che il frusto staccato ha rispetto alla piramide o al cono, il cui asse è au. Resta pertanto da mostrare che in ha ad no la medesima proporzione che il frusto ha rispetto al cono, il cui asse è au. Ma come il cono, il cui asse è da, sta al cono, il cui asse è au, così il cubo da sta al cubo au, cioè il cubo hx al cubo xk: ma questa medesima proporzione è quella che hx ha ad xs: perciò, scomponendo, come hs sta ad sx, così il frusto, il cui asse è du, starà al cono, o alla piramide, il cui asse è ua. Ma come hs sta ad sx, così pure md sta a on; perciò il frusto sta alla piramide, il cui asse è au, come md sta ad no. E poiché an è della ad, mentre ai è della au; la rimanente in sarà 3/4 della rimanente ud; perciò in sarà eguale alla md. Si è poi dimostrato che md sta ad no come il frusto sta al cono au: risulta dunque che questa medesima proporzione è anche quella che in ha ad no. perciò manifesto quello che ci eravamo proposti.


Torna all'Indice